مدرس
عاهد مليح فلاح السبوع

  • السيرة الذاتية
  • التخصص: علم الحاسوب/علم البيانات والذكاء الاصطناعي
  • الكلية: كلية تكنولوجيا المعلومات
  • القسم : قسم علم الحاسوب
  • البريد الالكتروني: ahed_alsbou@ahu.edu.jo
  • رقم الهاتف: 00962775639040

عاهد مليح السبوع هو محاضر في كلية تكنولوجيا المعلومات في جامعة الحسين بن طلال، حيث يعمل كعضو هيئة تدريس منذ عام 2014. حصل على درجة البكالوريوس في علوم الحاسوب من جامعة الحسين بن طلال، معان، الأردن، عام 2006، ودرجة الماجستير في علوم الحاسوب من جامعة البلقاء التطبيقية، السلط، الأردن، عام 2012، ودرجة الدكتوراه في الذكاء الاصطناعي من جامعة ماليزيا ترنجانو، كوالا ترنجانو، ماليزيا، عام 2024. تتركز أبحاثه على تطبيقات الذكاء الاصطناعي، والتعلم العميق، والتنقيب في البيانات، وأنظمة التوصية. يمكن التواصل معه عبر البريد الإلكتروني: ahed_alsbou@ahu.edu.jo.

My research interests lie in computer science: 1. in the area of programming languages 2. Data base 3. Data Mining

A Survey of Arabic Text Classification Models
  • ملخص البحث
  • There is a huge content of Arabic text available over online that requires an organization of these texts. As result, here are many applications of natural languages processing (NLP) that concerns with text organization. One of the is text classification (TC). TC helps to make dealing with unorganized text. However, it is easier to classify them into suitable class or labels. This paper is a survey of Arabic text classification. Also, it presents comparison among different methods in the classification of Arabic texts, where Arabic text is represented a complex text due to its vocabularies. Arabic language is one of the richest languages in the world, where it has many linguistic bases. The researche in Arabic language processing is very few compared to English. As a result, these problems represent challenges in the classification, and organization of specific Arabic text. Text classification (TC) helps to access the most documents, or information that has already classified into specific classes, or categories to one or more classes or categories. In addition, classification of documents facilitate search engine to decrease the amount of document to, and then to become easier to search and matching with queries.
  • رابط البحث
  • الكلمات المفتاحية
    Arabic language processing Arabic text categorization Arabic text mining Classification algorithms Clustering algorithms Natural languages processing Text classification
Semantic Clustering of Functional Requirements Using Agglomerative Hierarchical Clustering
  • ملخص البحث
  • Software applications have become a fundamental part in the daily work of modern society as they meet different needs of users in different domains. Such needs are known as software requirements (SRs) which are separated into functional (software services) and non-functional (quality attributes). The first step of every software development project is SR elicitation. This step is a challenge task for developers as they need to understand and analyze SRs manually. For example, the collected functional SRs need to be categorized into different clusters to break-down the project into a set of sub-projects with related SRs and devote each sub-project to a separate development team. However, functional SRs clustering has never been considered in the literature. Therefore, in this paper, we propose an approach to automatically cluster functional requirements based on semantic measure. An empirical evaluation is conducted using four open-access software projects to evaluate our proposal. The experimental results demonstrate that the proposed approach identifies semantic clusters according to well-known used measures in the subject.
  • رابط البحث
  • الكلمات المفتاحية
    requirements elicitation; functional requirements; semantic clustering; hierarchical clustering; software requirement specifications
A Survey of Arabic Text Classification Models
  • ملخص البحث
  • There is a huge content of Arabic text available over online that requires an organization of these texts. As result, here are many applications of natural languages processing (NLP) that concerns with text organization. One of the is text classification (TC). TC helps to make dealing with unorganized text. However, it is easier to classify them into suitable class or labels. This paper is a survey of Arabic text classification. Also, it presents comparison among different methods in the classification of Arabic texts, where Arabic text is represented a complex text due to its vocabularies. Arabic language is one of the richest languages in the world, where it has many linguistic bases. The researche in Arabic language processing is very few compared to English. As a result, these problems represent challenges in the classification, and organization of specific Arabic text. Text classification (TC) helps to access the most documents, or information that has already classified into specific classes, or categories to one or more classes or categories. In addition, classification of documents facilitate search engine to decrease the amount of document to, and then to become easier to search and matching with queries.
  • رابط البحث
  • الكلمات المفتاحية
    Arabic language processing Arabic text categorization Arabic text mining Classification algorithms Clustering algorithms Natural languages processing Text classification
Semantic Clustering of Functional Requirements Using Agglomerative Hierarchical Clustering
  • ملخص البحث
  • Software applications have become a fundamental part in the daily work of modern society as they meet different needs of users in different domains. Such needs are known as software requirements (SRs) which are separated into functional (software services) and non-functional (quality attributes). The first step of every software development project is SR elicitation. This step is a challenge task for developers as they need to understand and analyze SRs manually. For example, the collected functional SRs need to be categorized into different clusters to break-down the project into a set of sub-projects with related SRs and devote each sub-project to a separate development team. However, functional SRs clustering has never been considered in the literature. Therefore, in this paper, we propose an approach to automatically cluster functional requirements based on semantic measure. An empirical evaluation is conducted using four open-access software projects to evaluate our proposal. The experimental results demonstrate that the proposed approach identifies semantic clusters according to well-known used measures in the subject.
  • رابط البحث
  • الكلمات المفتاحية
    requirements elicitation; functional requirements; semantic clustering; hierarchical clustering; software requirement specifications

v   Lecturer – Faculty of Information Technology- University of Al-hussien Bin Talal, Maan-Jordan (2. February 2014 up to date). v   Supervisor of Computer Lab - University of Al-Hussein Bin Talal - Ma'an - Jordan – ( 18.June.2006 - 2. February 2014   ). v   Work as a teacher at Grain Secondary School for four months (2006). v   Part-time Lecturer - Faculty of Information Technology - University of Al-Hussein Bin Talal - a period of three semesters, Jordan. v   Teaching   of the programming language C + + subject (3 credit hours) in the second semester of the academic year (2012 /2013). Al-Hussein Bin Talal University v   Teaching of the Fundamentals to information technology subject (6 credit hours) in the first semester of the academic year (2013 /2014). Al-Hussein Bin Talal University v   I have a the local Jordanian national test in English.

علم الحاسوب /علم البيانات والذكاء الاصطناعي

1- تعلم الآلة 2- تراكيب البيانات 3- البرمجة الشيئية 1 4- أساسيات تكنولوجيا المعلومات 5- لغة البرمجة C++ 6- لغة فيجوال بيسك 7- مهارات الحاسوب 8- مهارات الإنترنت ووسائل التواصل الاجتماعي

المؤهلات العلمية و الشهادات

1- دكتوراه في علم الحاسوب (علم البيانات والذكاء الاصطناعي)، جامعة ماليزيا ترنجانو (UMT) – ترنجانو، ماليزيا، مارس 2019 – أغسطس 2024. 2- ماجستير في علم الحاسوب، جامعة البلقاء التطبيقية، الأردن، سبتمبر 2009 – أغسطس 2012. 3- بكالوريوس في علم الحاسوب، جامعة الحسين بن طلال، الأردن، سبتمبر 2002 – فبراير 2006. 4- شهادة الثانوية العامة - الفرع العلمي، وزارة التربية والتعليم، الأردن، سبتمبر 2001 – أغسطس 2002.

الساعات المكتبية